Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models
نویسندگان
چکیده
منابع مشابه
Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models
Explained variance (R) is a familiar summary of the fit of a linear regression and has been generalized in various ways to multilevel (hierarchical) models. The multilevel models we consider in this paper are characterized by hierarchical data structures in which individuals are grouped into units (which themselves might be further grouped into larger units), and there are variables measured on...
متن کاملOn measures of explained variance in nonrecursive structural equation models.
Whereas measures of explained variance in a regression and an equation of a recursive structural equation model can be simply summarized by a standard R2 measure, this is not possible in nonrecursive models in which there are reciprocal interdependencies among variables. This article provides a general approach to defining variance explained in latent dependent variables of nonrecursive linear ...
متن کاملcomparison of conventional bayesian and approximate bayesian approaches in estimation of variance components using animal models
animal models are used to model the observations of animal performance that are genetically dependent.these models are considered as generalized linear mixed models and the genetic correlation structure of data is considered through random effects of breeding values. one goal of the mentioned models is to estimate variance components. in this research, an approximate bayesian approach presented...
متن کاملAnalysis of Hierarchical Bayesian Models for Large Space Time Data of the Housing Prices in Tehran
Housing price data is correlated to their location in different neighborhoods and their correlation is type of spatial (location). The price of housing is varius in different months, so they also have a time correlation. Spatio-temporal models are used to analyze this type of the data. An important purpose of reviewing this type of the data is to fit a suitable model for the spatial-temporal an...
متن کاملUsing Bayesian Multilevel Whole Genome Regression Models for Partial Pooling of Training Sets in Genomic Prediction
Training set size is an important determinant of genomic prediction accuracy. Plant breeding programs are characterized by a high degree of structuring, particularly into populations. This hampers the establishment of large training sets for each population. Pooling populations increases training set size but ignores unique genetic characteristics of each. A possible solution is partial pooling...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technometrics
سال: 2006
ISSN: 0040-1706,1537-2723
DOI: 10.1198/004017005000000517